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Although the theory of functional differential equations

in 3n is very well developed, comparatively little is known

about these equations, when the right hand side contains unbounded

operators. Since semigroup methods have proved to be a powerful

tool in treating functional differential equations in Rn [109012]0

- it seems-desirable to extend semigroup theory methods also to the

more general situation of partial differential equations with delay.

The present paper is intended, to make a contribution in this sense.

We shall consider the functional differential equation

(1) d
C. x~t) - f x(t)) g xCt),xt)

in a reflexive Banach space Y with norm i'i. As usual for a

function x:[-r,T) * Y, we let xt(s) - x(t~s) for s e [-r,O]

and t C [0,T). The delay r- in (1) is chosen in [--,O] and

f is a nonlinear, not necessarily bounded operator from Dom(f) Y

into Y. The initial datum at time 0 is a Y-valued function

defined on [-r,01. The existence and uniqueness problem as well

as some qualitative aspects of (1) have been treated in different

state spaces in a number of recent papers, some of which are men-

tioned in the references [5,6,7,8,15,16,17).

The objective of this investigation is to give sufficient

conditions on f and g such that local semigroups can be associated

'with (1) - this will imply representation formulas for the solutions

of (1) - and, secondly, to discuss various notions of solutions which

have arisen in the study of (1). Although only the autonomous
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2.

equation is considered here, many of the results remain true if

f and g depend on t.

The state-spacechosen for the presentation is Y x LP(-r,O;Y),

where for (n,*) E Y x LP(-r,O;Y) we use the norm

"1 0I(,0) II " (IT1l p  + 0. e (ps) ] (s)JPds) l /p

for some p > 0. Thus Y x LP(-r,O;Y) becomes a reflexive Banach

space, denoted by Z. In case 0 < r <, one may chose p a 0.

On the other hands, for r = a, the need for weighting the norm

is quite obvious and our results will remain true for weighting

* functions different from the one used here, as long as they are

bounded from above and below by an exponential function. The

projection of Z onto the first and second components will be

denoted by P1  and P2 , respectively.

Now that the state-space is fixed we specify as initial data

for (1) at t - 0

(2) (x(O),x o) - Cr,*) for C E,) C Z.

The conditions on f and g will guarantee that the solutions of

(1) and (2) do not depend on a specific representative in the class

C C LP(-r,O;Y).

Next we reformulate (1) and (2) in Z. This abstract equation
A 1R F, --:1 (AFSC)
N, d is

D" trL ;i-, o U.'rm t$,
I A. D. BLQ4L
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3.

is not a consequence of calculations, but it is motivated by

previous knowledge about semigroup-theory treatment of (1) a"

(2) in case Y uMn. Therefore, we consider

-~t Az(t), in Z

(3)

z (O)= z0 , for zo Z

where Dom(A) {( 0*I C W"'P(-r,O;Y), 0 (O), 0(O) E Dom(f)}

and for (0 (0) , ) E Dom (A)

A(0(0),O =(f( (O)) + * ()O,)

Here W1'P(-r,O;Y) stands for the Sobolev-space of absolutely

continuous functions defined on [-r,O] with first derivative in

LP(-r,O;Y). Conditions will be given that guarantee that X~

generates a semigroup, and it then needs extra analysis to clarify

how these "generalized" solutions are associated with (1) and (2).

The conditions on f and g are motivated by the following two

examples:

Mi (~* hl(n) + fkcs)h2 (#cs))ds

for (n,#) C Z, h1 :Y *Y, for i -1,2 and k:[-os,OJ *oR. Here,
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for a sufficiently rich class of kernels k, the smoothness of

the maps hi determines the smoothness of g:Z * Y.

(ii) g(r,*) - h3(r,*(-rl),..., (-rt)),

with h3:Y +l * Y, which corresponds to the case when (1) is a

difference differential equation. Contrary to (i), Lipschitz

continuity of h3 , for example, does not imply Lipschitz con-

tinuity of g, and the situation is even worse, since h3  is not

even well defined on Z.

For the convenience of the reader we end this section by

recalling the definition of local semigroup.

Definition [4].

Assume that for each z E Z there is associated a strictly

positive number t(z). Let t+ denote the suprenum of these

numbers. For each t E [O,t +) let D(t) -(z e Z:t < t(z)). A

family of operators {T(t)}:D(t) * Z is called a strongly con-

tinuous local semigroup in Z if

a) D(O) - Z and T(O) is the identity operator on Z,

b) D(t2) c D(tl) for 0 1 tI < t2 < t+  and zD(t)

for all 0 < t < t(z),

* c) if t, s > 0 and t + s < t , then

T(s)D(t~s) c D(t) and

T(t)T(s)z = T(t~s)z for all z E D(t~s),
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d) for each t, T(t) is a continuous operator on D(t),

e) for *a a I C Z, the map t * T(t)z is continuous QR1

[0,t(z)).

2. Local Semigroups

We begin by listing all the hypotheses that are needed in

this section. Some familiarity with semigroup theory is assumed;

as a reference we refer to [2].

(Hi) The operator f: Dou(f) * Y, Dom(f) c Y, is densely defined

and (f-wI) is i-dissipative for some w > 0.

(H2) g:Z - Y is locally Lipschitzian, i.e. there exists a

nondecreasing real-valued function L such that

lg(x) - g(y)l <_ L(r)jjx-yjj

for all lixil < r and IlYll < r.

Condition (H3) below is a generalization of Borisovich-Turbabin

type conditions previously used in case Y -]Rn . For a discussion

of this condition we refer to [9], where it is also shown that a

large class of maps g of the form (ii) satisfy (H3).

(H3) (a) If for some a > 0, x C LP(-eo,a;Y) and x is absolutely

continuous on [O,a), then the map G:t * g2(x(t),xt)I /
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is defined a.e. on [O,a), depends on the equivalence

class of x only and is in L(0,0;Y).

(b) There exists a nonnegative, nondecreasing function

y"R' x]RxR ]R+  such that for each a > 0 and 8 > 0

"_ the inequality

t12(x (s),xs)-92(y (s) .,ys) lds _.< ('t,0) ( Is)()-y (S) iPds) ,/

with (s) = ePs for s E [-r,O] and 5(s) -1 on [0,-),

holds for t C [O,t) and all functions x,y in

LP(--,a;Y) which are absolutely continuous on [0,.)

with IjxsII < 8, 11ys11 < 8 for s E [Ow).

(H4) g is defined on V'1IP={(#(O),#)#1 C WI'P(-r,0;Y)) and is

locally lipschtzian fror Wlp endowed with the suprenum

norm, to Y.

(HS) g is positive definite with constant k2, i.e. for all

# E Dom(g), g does not depend on the values that * takes

on [-k2 ,0] .

For (n,6) C Z the function x(';n, ) will be called (strong)

solution of (1) and (2), if it is defined on [-r,tl) with

jt I > 0, if it is absolutely continuous on [0,t 1), and satisfies (2)

and (1) almost everywhere,

3< /
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Theorem 1. Assume that (Hi) and (H2) hold. Then

(a) A &"*rates a local semigroup T(t) in Z, given by
t -n

T(t)z lim(I-nA) z, for all t C [o,t(z)) and
n

Z 6 Z.

: (b) -For -z E Dom(A),T(t)z satisfies (3) and the solution

x(" ;z) of (1) and (2) is given by

(4) x(t;z) = PIT(t)z, for E [0,t(z)) and x(t;z) ( (P2z)Ct)

for t E [-r,0].

It Of course, if in (H2) the Lipschitz constant can be chosen

globally, then t(z) = for all z E Z and A generates a

(global) semigroup on Z.

Proof. We give here an outlifie of the proof and refer to [12]

for the details. For each 0 E [0,0) let HO8 denote the radial

projection on Z, so that for z E Z

z for Ilzil B

S 0 z for III

1. For fixed but arbitrary 0 > 0 we remark that the map z , g(Cloz)

is globally Lipschitz continuous with Lipschitz constant 2L(B).

Some ca1 ulations then show that the operator A0  given by

€o/



Dom (A)- Dom (A)

and

*A A0 0(0).0) ff-(00)) + g(1I8(0(0),w),;)

I satisfies the conditions of the Crandall-Ligett theorem [3], i.e.
A -w(O)I is dissipative for some w(o) E ]R and range of

(I-X(A8) Z for all sufficiently small nonnegative X. This

implies that A, generates a (global) semigroup T,(t), t > 0,

C on Z for all > 0 given by

(5) T tz=lim(I - lA ) z for z E Z.

Moreover T (t) is Lipschitz continuous with Lipschitz constant

exp~w(O)t), and T a(-)z is Lipschitz continuous for each fixed

z E Z. For each z C Z with lizil < 8 let

t 0(z) - (inf t:II TM(tZ 11 t~ 0).-

We shall verify that for t E [0,t (z)) we can replace A8 by

A in (4), so that

(6) T(t)z -lim(I - A ) z -lim(I - A )-nz on (0,t (z)).
n nB n nB
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Choose T E (O~t (z)) and put y - -sup 11T (t)zII . Obviously

y > 0. Msavm first that z E DoaCA) and let J %A

for nonnegative, sufficiently small X. Then by [18,pg.457] we

have for all m> n >0, and j 1,...,n and t E 0,T]

Ili z in zi < (2(11 ~j)) / exp(4w()L~) IIA Z11
n n

where .n and m are chosen sufficiently large, so that both

Sand JT exist. Taking the limit as mn- in the last

estimate, we get

z T I z exp (4 w(O)T) IIA Z11

Choosing No such that 11 exp(4w(B)T) IIA z1I < y ,we get

0o

for all n >No, j m lp ...,n and t E [0,T]

(7) IIJ~ z1i < lIT 8 ( 2)z J 1 I IT 8 U-HI <
n n t

Since 18was arbitrary (7) implies (6) for z E Dom(A). For
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arbitrary z E Z, (6) follows from the density of Dom(A) and

the Lipschitz continuity of (I - A . Now take 0 < <n Bz <01<2
then tl(z) < t8 (z) and therefore t(z) = l i m t (z) E (0,-]

exists for every 7 E Z. Finally, it is simple to check that

{T(t)z: t E [O,t(z))} is a local semigroup in Z and that (6)

holds for all t E [Ot(z)). Assertion (b) of the theorem follows

from [3, Theorem 2]. Indeed; if z E Dom(A), then (3) holds on

[0,t(z)). Here we note that. Z is reflexive and that T(t)z

is Lipschitz continuous in t. By a general result in [14],

T(t) is a local translation semigroup. Therefore for z E Dom(A)

we may define

x(s;z) = P2 T(O)z)(s) for almost every s E [-r,0],

x(s;z) = P1T(s)z for s E [O,t(z ),

and taking projection P1  in (3) we see that x(.;z) is a

solution of (1) and (2) on [-r,t(z)). This ends the proof.

To include a more general class of equations we now assume

that

g = g1 + g2

where satisfies (Hl) and (H2) and g2  satisfies (13) - (H5).

T9r
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1.1

We shall make use of the family of operators defined by

S (t) (,) =C,

w (s+t) for s + t < 0

where *s

nI for s + t > 0

Replacing A by Ac, c > 0, given by Dom(Ac) = Dom(A) and

A w($0),O) = (f(w(0)) + gi([0),€) + i f g(S ( (0) ,))do, 0)

one can see that for each fixed c > 0 Theorem 1 is applicable,

which implies the existence -ef local semigroups T£(t) generated

by AC. The problem of taking the limit as e b 0 in Tc(t)z

can be treated with techniques as if Ac would arise from a

Yosida approximation and the following result can be derived.

Theorem 2. Assume that g = gl + g2+ where g, satisfies (Hl)

and (H2), and g2  satisfies (H3) - (HS). Further, let Y have

a uniformly convex dual Y*. Then for each z E Dom(A) there

exists a unique solution x(.;z) of (1) and (2) on [-r,t(z)).

Moreover for z E Dom(A)

T. I
1K -t
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def -rnCt~ a ii(
(8) T(t)z = (x(t;z), xt(z)) lir TO(t)z lir lir (I 1 AC)

E+ c +0 n

for t E [O,t(z)), and the limit is uniform on compact

subintervals of [O,t(z)).

For the proof of this theorem under a weaker hypothesis then (4)

we refer to [12].

The following Corollary asserts that t(z) in Theorem 2

is actually the best possible choice.

Corollary. (a) For z E Dom(A) the alternative

t(z) = or Iim lIT(t)zll =
t+t(z)

holds.

(b) For each z 6 Dom(A) and each t* E (O,t(z))

there exist constants e = e(z,t*) and r - r(z,t*)

such that for all y E Dom(A) with Iz-yI <c

t* < t(y) and IT(t)z - T(t)yI < r llz-yll

for all t C [O,t*].

. - (c) For each n > 0 there exists a T(n) > 0 such

that t(z) > r(n) for all z e Dom(A) with

U zll < n.

e...........
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The operators T(t) given in Theorem 2 can be extended

to a local amWgroup in Z. For z C Dom(A) we take t(z) as

in Theorem 2 and for z E Z %- Dom(A) we let

* M(zp) - (y:y E Dom(A), z E B(yec(y,t(y)-p)), t(y) > p),

where p EmR, p > 0, c is defined in the above Corollary and

B(y,r) is the open ball in Z centered at y with radius r.

Next we define

f.(9) t(z) = sup sup (ty)-P)
P>O yEM(Z ,P)

for z E Z *- Dom(A). The Corollary and the fact that Dom(A) is

dense in Z imply that t(z)- > 0. For T E (0,t(z)) and

z E Z . Dom(%) there exists 65.> 0 and E M(z,O) such that

z E B(S ,c(k,t(f)-p)). We may therefore define

(10) T(t)z = lim T(t)zn for t E [0,T]
n

where z n CE Dom(A) nlB~c~t~-) and lrn zn = z. By the
n n

Corollary T~t)z is well defined via (10) and the limit is uniform

in t 6 [0,T). Moreover, the operators T(t), t > 0, being

continuous extensions of continuous operators, are continuous

operators on their respective domains. it is now simple to see

that a .so (a) , (b) , (c) and (e) in the Definition of local

semigrou s are satisfied. We may therefore summarize the above

discussion in a theorem.
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Theorem 3. Let the assumptions of Theorem 2 hold, Then

{T(•]}D(•.) Z, wtth T(t) defined as in (.81 resp"iOvly (101

and

D(t) = {z:t < t(z)}

with t(z) as in Theorem 2 respectively (9), is a strongly

continuous local semigroup in Z.

3. Mild Solutions.

T, In this Section we discuss further the relationship between

the semigroups given by Theorems 1 and 2 and solutions of (1)

and (2). For z E Z -. Dom(A), T(t)z will in general not be

associated with a strong solution of (1) and (2) via (4). However,

if f is linear, the local semigroup T(t): D(t) Z, gives rise

to mild solutions. By definition a function z(.) is called mild

solution of (1) and (2) if it satisfies

z(t) - U(t)n + oU(t-s)g(z(s),zs)ds, in Y, for t E [O,t(n,#))

(11)

tz(t) - (t) for almost every t E [-r,O].

L Here we assumed that (Hl) holds and denote by 11(t) the linear semi-

group generated by f.

./

.. I
. . . - . .* , n* . . ,.s s...
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Theorem 4. Assume that f is linear and let the assumptions of

Theorem 2 hold. Then for each (n,#) e Z there exists a 10Aution

v: [-rt(n,#)) * Y such that T(t) (n,#) - (v(t),vt) for t E [O,t(n,#))

and v satisfies (11).

Proof. The existence of the map v, just as in the proof of Theorem

1, is a consequence of the fact that T(t) is a translation semi-

Igroup. For z E Dom(A) the claim follows from Theorem 2 and

[12, Theorem 2.2]. If z E Z*-. Dom(A), let T e (Ot(z)). Then

by definition of (t(z) in (9) there exists a sequence

f. zn a (nnn) E Dom(A) with lim zn 0 z, lim t(Zn) > T and
n n

(12) lim T(t)z n = T(t)z uniformly on [0,T].
n

Notice first that s l U(t-s)g(T(s)z) is integrable on [0,T] and

that T(t)(Zn) - (vn(t),(vn)t) for a family of maps vn . Since

vn  satisfies (11) for each n and since the family T(.)zn:[O,T] * Z

is uniformly bounded, (H3) together with (12) and the fact that U(t)

is a linear Co-semigroup imply the result.
Z0

We close with a theorem further clarifying the relationship

, between mild solutions and (strong) solutions.

140 o

Theorem 5. Under the assumptions of Theorem 4 the map v defined

! 1there satisfies

N1

. ....- runs- *~
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(13) v(.t) " * cf0 v(s)ds) * (vs)Jvsld5.

for all (n,*) C Z, and t C [0,t(n,#)).

This result is a special case of (13, Theorem 2.3). Of

course, (13) is just the integrated form of (1) with integration

and operator f interchanged.in the second summand.

I.

O "
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